Universidad Autonoma de Madrid
Universidad Autónoma de Madrid
Deparment of Theoretical Physics

Facultad de Ciencias Departamento de Fisica Teorica Grupo de Astrofisica

Welcome

Astrophysics and Cosmology

Galaxy UGC10214 UGC 10214

Currently, the Astrophysics Group consists of 7 permanent professors, as well as several fellows, postdoctoral researchers, and Ph.D. students (cf. People). Other permanent members of the Department of Theoretical Physics and the IFT (e.g. J. García-Bellido, B. Gavela, and C. Muñoz, among others) often carry out activities and expeditions towards cosmology and astroparticle physics, and several scientists from other institutions collaborate with the Group on a regular basis.


Star formation and exoplanets

Star formation, planetary systems and planet are all links in the same chain: the gravititory collapse of a fragment of a molecular cloud, which leads to star formation and then to circumstellar disks where the planets will be formed. There are several running projects regarding this evolutive chain: i) Protostars and young star objects; ii) Evolution of protoplanetary disks into planetary disks; iii) Kuiper belts and exozodiacal light in mature stars of the solar vicinity; iv) Detection and characterization of earth-like planets in near stars.
This departmental research takes place in the framework of large international consortia (i.e. DUNES and GASPS related to the space telescope Herschel or ARENA).


Extragalactic Astrophysics

The chemical evolution of different kinds of systems in the universe provides key signatures that help us to identify the main processes that regulate the transformation of gas into stars within galaxies, one of the key open questions in galaxy formation and evolution. The subgroup of extragalactic astrophysics studies these processes, both from a theoretical (i.e. modelling) point of view as well as through observations, devising new methodologies for the determination of chemical abundances in stellar populations and the interstellar gas. Currently, much of the work focuses on the scientific exploitation of integral-field spectroscopic data, the “activity” (high-energy radiation emission) in galaxy nuclei, and its connection with violent star formation. The group is heavily involved in several international collaborations such as e.g. AMUSING, HI-KIDS, WEAVE, etc. and regularly contributes with open sofware tools for the scientifc community.


Computational Astrophysics and Cosmology

This group develops simulations of visible structures in the Universe at different astronomical scales: from the largest - of order of billion light-years -, to the smallest, e.g. galaxies such as the Milky Way or elliptical galaxies.
At the largest scales, the gravitational effects of the dark matter and dark energy components are taken into account and explored, as well as gas-dynamic effects. These simulations are a virtual laboratory which serves to test and verify theories and astrophysical and cosmological models; it is also a tool to design future observational and instrumental strategies.
At shorter scales, the group is involved in studying galaxy formation in a cosmological context, aiming at developing codes as realistic as possible, including star formation, feedback and sofisticated models for chemical enrichment. The group has also developed different software telescope devices, such as the GRASIL-3D code, to accurately take into account the dust effects in the SEDs and images of simulated galaxies, among others.
The team participates in large international collaborations on Universe simulations and some of them, as Mare Nostrum Universe, are still the biggest simulations in the world that simultaneously include gas and dark matter.
It also collaborates with international leading groups in galaxy formation, such as MPIA at Heidelberg, Trieste Osservatory, Central Lacanshire University and AIP at Potsdam.


Astroparticle Physics and Cosmology

This line deals with the origin and composition of the Universe and spans research in astroparticle physics and cosmology. Both fields are undergoing a tantalizing transformation as a consequence of the many running experiments which provide precise results about the universe at its largest scales. Data of deep impact is expected to be available very soon, such as that from the PLANCK satellite or from dark matter experiments e.g. XENON. The collaboration and coordination in this field between IFT members (with PE10-13 rating in this area of 5/5 inside CSIC y 4/5 at an international level) and the extremely active and consolidated astrophysics group of the Department is very positive.

Grupo de Astrofísica - Universidad Autónoma de Madrid © 2011
Page maintained with yWeb - Last updated on Wed Oct 19 09:14:02 2022 - ... Paranoy@ Rulz!
Declaration of Accesibility